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Abstract: Formulation is given for efficient parabolic equation solution of radiowave
propagation in inhomogeneous atmosphere and over irregular terrain. Both standard
and wide angle parabolic equation derivations are presented. Impedance boundary
conditions are used to characterize the ground. A tropospheric boundary condition
based on the exact solution of Schrodinger equation in a quarter plane is derived. To
permit efficient modeling of the irregular boundary, the parabolic equation together
with the boundary conditions are transformed into a numerically generated curvilinear
coordinate system. Finally, formulation is presented for a finite difference solution
using Crank-Nicolson implicit scheme.




1. Introduction

It is well known that multipath fading can significantly effect the link reliability in a
communications system or target detectability in the case of radar. The path between
a transmitted and a receiver is often obstructed by natrual or man-made obstacles
such as hills, buildings, atmospheric layers, trees, rain, fog, etc. Propagation outage
due to multipath fading depends in a complicated manner on propagation climate,
terrain features, path length, radio frequency, and fade margin. In the case of atmo-
spheric multipath fading, interference due to two or more super-refracted rays arriving
at the receiver via different paths can lead to a complete loss of signal. Other patho-
logical phenomenon such as obstruction fading (caused by sub-refractive atmospheric
effects) and ducting (caused by extreme super-refractive effects) are also possible.
Such phenomenon are more common in warm and tropical climates, particularly near
shores, where elevated inversions are formed easily due to the large temperature and
partial pressure differentials. Reflection multipath fading, which is due to interfer-
ence between the direct and the ground reflected ray depends strongly on the terrain
geometry and ground constants. Moreover, elevated terrain features could completely
mask a receiver from a transmitter leading to severe loss of signal (in some cases, it
is advantageous to site antennas behind hills to provide shielding against undesirable
interference). It is very important to assess the effects of environment on the link. A
computer model that can take into account a given refractive index profile, terrain
elevation data, and varying ground parameters will be very helpful in predicting the

link performance.

In this report we present formulation details for an efficient numerical solution of
wave propagation in an inhomogeneous atmosphere and over irregular terrain using
parabolic equation. :

Unlike all other previous formulations of the parabolic equation, we will use a modified
Helmholz equation for propagation in an inhomogeneous atmosphere as suggested by
Maxwell’s equations (all previous formulations use a Helmholtz equation which is
only true for fields in a homogeneous medium). Because the parabolic equation is a
full-wave method, it will include all aspects of wave propagation such as reflection,
refraction, diffraction, and surface wave propagation. In this respect it is far superior
to the commonly used ray method.

Parabolic equation approximation to an elliptic partial differential equation, which
the true fields satisfy, has proven to be a viable approach for studying propagation
problems in underwater acoustics. The method is just gaining popularity with the
electromagnetic community. Although the parabolic equation regards waves as es-
sentially traveling one-way, it allows a rapid solution of the fields by way of marching
along the range starting from an initial range. Another advantage of the PE method
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compared to the ray methods is that it is valid even in the shadow region where the
simple ray methods completely break down. Furthermore, it appears to be the only
practical method for predicting propagation over long ranges (greater than 1 km) over
a wideband from HF (a few MHz) through SHF (a few tens of GHz). The method is,
however, not without limitations. In its standard form, the accuracy of the method
is limited to waves traveling essentially within £+10° from horizontal. Furthermore,
treatment of the boundary conditions on the uneven terrain is difficult.

The method we propose to use will attempt to remove both of these defficiencies.
Firstly, we use a Helmholtz-like elliptic equation to describe the fields and arrive
at a wide-angle parabolic equation subject to certain approximations. To facilitate
imposition of the boundary conditions on the irregular terrain, the equations will be
transformed to a body-fitted curvilinear coordinate system. The PE will be solved
using finite differences on a non-rectangular mesh. This is a major departure from
previous approaches which will not only make the method more efficient but also
more accurate.

In Section 2, we derive the exact equations satisfied by 2D fields in an inhomogeneous
atmosphere. Impedance boundary conditions are used to characterize the ground. In
Section 3, we present details on the impedance boundary conditions. Starting from
the exact equations presented in Section 2 for the fields, we derive, in Section 4, a
parabolic equation (PE) valid for narrow angle propagation. This case is termed as
the standard PE. The standard PE is generally valid for propagation angles that
are within +10° from horizontal. To accomodate waves traveling at larger angles, we
present the derivation of a wide angle PE in Section 5. To truncate the computational
domain we derive boundary conditions on an upper boundary, which are termed as
the tropospheric boundary conditions. The derivation is based on the solution of
" Schrédinger type parabolic equation in a quarter plane z > 0,y > 0. Thisis presented
in Section 6.

For an efficient numerical implementation, we transform the differential equation and
boundary conditions to a curvilinear coordinate system. This is presented in Section
7. Details on the numerical generation of the curvilinear coordinate system are given
in Section 8. Finally, in Section 9, we present steps leading to a finite difference
solution of the equations using a Crank-Nicholson implicit scheme.




Solution of 2D Fields in an Inhomogeneous Medium

2.

Consider an electric source producing fields in an inhomogeneous region as shown

he sources and the medium are two-

in the figure below. Let us assume that both t
dimensional in nature in that all quantities are

independent of the z-coordinate. As

in the case of a homogeneous medium the fields can be decomposed into a TE, case
(vertical polarization) and a TM, case (horizontal polarization). It is assumed that

propagation takes place in the zy-plane.
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From Maxwell’s equations, we have

—jwuH

VxE

-

JweE + J

Iy

VxH

In the case of vertical polarization, the fields could be written in terms of the z-

H,, (TE, fields). Substituting into (2) we

component of the magnetic field, i

have

2

J

~

VH, x z —
Jw

-

=jweE+f==>eE

H=Vx(sH,)=VH, x}

V x

In a source-free environment, we have

6E=VHZX2

Jw

Substituting into (1) we get

v,
€

Vx(

= 1
—Jw

VxFE



The equation satisfied by the magnetic field is then

1 VH, .
-—V. ( ) = —jwuH, =

Jw €

v. (VH’) +w'uH, =0|  Vertical Polarization (3)

€

Once the magnetic field is determined the electric field is given by

zx VH,

Jwe

E=

Note that H, does not satisfy the Helmholtz equation unless € is constant.

For horizontal polarization on a similar analysis with E = 3E, shows that

v (VEZ> + w2k, =0 Horizontal Polarization (5)
n

If the medium is non-magnetic, u = o and E, satisfies the Helmholtz equation. We
will characterize the ground in terms of impedance boundary conditions [3].

We may combine the vertical and horizontal cases shown in (3) and (5) into an
equation of the form

V- (aVi) + 6y =0 (6)

where

- TE or Vertical Pol.

~1— TM or Horizontal Pol.
U

8 = akin¥(z,y)>0 (®)
H, TE Pol.

Y = (9)
E, TM Pol.

The quantity n(z,y) is a position dependent refractive index of the medium. The
partial differential equation (PDE) given in (6) is elliptic, for we have

8 ( ov\ 8 [ o
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or
0%y 0% Oy da O O
a['a?“*‘a;ﬁ} 5 0z T oy oy TPV
The discriminant for the above PDE is —1 < 0 implying elliptic nature of the equation.

Equation (6) could be expressed as

v?,' "'_—/':r I Tl —
Y= ovet yd)y+a¢ (10)

For a non-magnetic, loss-less medium, we have

1
,  Vertical Pol.
€p€r
a =
1
—, Horizontal Pol.
Ho
so that for vertical polarization
1o 01y L8 1o
a 0z 6T(9x e.)] €& Ox  n? Oz
2
= —— %n_ (n is the refractive index)
n Ox
Similarly,
10a_ 200
a 0y n Oy
Letting
__2 _g_n Vertical Pol.
al(‘ray) = " ‘
0 Horizontal Pol.
_2 %E Vertical Pol.
a2($7y) = A " Y
| 0 Horizontal Pol.

equation (10) may be expressed in the form

V2 + a1, + asth, + k2n*yp =0 (11)




3. Impedance Boundary Condition

Impedance boundary condition relates the tangential components of electric and
magnetic fields at the interface of two media. If 7 is a unit normal and 3 is a unit
tangent as shown in the figure below, the boundary conditions are given by [3]

~
§=1tcosf+ gsinb
=—Zs

A
N —Zsinf + g cosd
Z

r .
S U - <
Lx “ & =23cosf —Usinf
; j = 8cosf + ¥ cosl
b x (0 x B) = —nolgd x H (12)

where A, = Z,/no is the surface impedance normalized to the free space value 7q.
The equation may also be expressed as

(0 Eio—E=-nApxH=0xE = oD % (& x H)
= oA, [(v- H)o — H] (13)

The surface impedance is determined from the intrinsic impedance of the medium
by considering plane wave reflections from the interface. The complex propagation
constants, v, 72, and the intrinsic impedances 7 and 7, in terms of the media
constants are indicated in the figure.

73 = jwprpo(o + jwegert)

= —k2u, (ET — 'ﬁl_)
GL oHrt 1 ]weo
v; Gneo’[u”/‘“’o—l : 2 |
L = -kolu“rlercl
7 7 rd / 7 /7 L4 7 V2 ’ 7 7 7
61260,’(71[40, f" 7% = —kg/"tr2€1‘c2
%
Jwioftrsr Hr1 _ {Ho
m = —— = Noy\[ T Mo =\
V 01+ Jweogern \ €rc1 \ €0
Hr2
2 = 7o
€r2

According to Snell’s law, we have v sinf; = vy, sin §,
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The plane wave reflection coefficients for the vertical and horizontal polarizations, Ry
and Ry are [7]

6, — 0;
Ry = M2 S€C 7t — T S€C — Surface Impedance ZSH = ngsect,

nq sec 8, + ny sect;

0, — 0;
Ry = M2 €08 Tt — Th €03 = ZSV = 1, cos b,
14 cos O, — 0y cos b;

0 2
af o et m 1_(11_sin(,i)
i m 72

-1/2

-1/2

.u"r2 €rel ,url €rcl
= 1= cos® i
Hr1 €rc2 ,ur2_6r02

and

1/2

7 ﬂr?ercl ﬂrlercl

AV = 1 = BT s o,
,urlerc2 Nr26r62

For the special case of p1 = po = pio, 01 =0,

€ [ € W_I/Q
! — - —2—cos?ehy (14)
€2 —J0r2 | €2 — J0r2 E
c r p 11/2
s SN PO S S (15)
€2 —J0r2 | €r2 — J0r2 i

For normal incidence ; = 90°

B>
BN
i

>
<
I

H €r1
AF AV = [
€2 — J0r2
For the 2-D case, impedance boundary conditions for vertical polarization can be
simplified as ‘

b x E=noA¥ [(0- Hyp — H| = oA} H
Taking a dot product on both sides with 2
;- (0 x E) = —noAVH,

Since z X ¥ = —§&, we have

—§-E=-nAVH,

Substituting from equation (4) for E, we get
. 2xVH,

S

= —UOA;JHZ

Jwe




b -VH, = jwenoAY H, = jkoe, A H,

i.e., the above can be put conveniently in the form

0H,

o ].kOCTAZHz =0 IBC Vertical Pol.

A similar analysis for horizontal polarization yields

OE. . 1
—Jk r_'_Ez - i .
EY JKop AF 0 IBC Horizontal Pol

This may also be obtained by resorting to duality.

For a perfectly conducting material, we have APV =0 and

OH,
ov
E, =0 Horizontal Pol.

= 0 Vertical Pol.

(16)

(17)




4. Standard PE Derivation
We will make some approximations and cast (11) in the form of a parabolic equa-

tion which permits a rapid numerical solution.

—jkoz

Let ¢(z,y) = 7z u(z,y)

Then

7701 = (ur —_ jkou - W) \/E ~ (uz - ]kou) \/—.’E ) r— oo

Yy = uy—'\/’?'v “yz:uIyN(“zy_jkouy) NG

Vyy = Uy N
Substituting into (11) we get
Upg + Uyy — 27koUz + a1Uz — 2jkoaru + agu, + (n? — 1)k2u =0

or
Ups + Uyy + (@1 — 25 ko) us + aguy + (n2 -1- 2jZ—1> k2u =0
. 0

If now we impose the approximation that

1/2
Juee] < (aF +4k3) " fual

we obtain
'—1 2 .a 2
urzm Uyy + Q2uy + (n —1—2]E) kS u
or
5 N
= ———<0a;] — 4 — 18
42) = Ghe + jar) {al gy Byz}u (12)

This is the exact form of narrow angle PE approximation. We would also like to
express the impedance boundary condition in terms of the ‘v’ functions.

N
Y
Y Z = &cosf—rvsinf
A 0
S =2 = p.Ve=0b-i
X el ov .
= —sind
) = —isinf+gcosh
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For vertical polarization we have

H, .
aHz —jkoETAer =0= 6@]} —-]konzA:/Hz =0
v
e-—-jkox
H.(z,y) = 7 u(z,y)
0H, o _uz, ¢~ ko
Gy \wTIPRYTomR) T
e—jkor

~ (u, — Jhkoz,u)

\/5 )

u, — jko(n?AY 4+ z,)u =0 IBC Vert. Pol.

Similarly for horizontal polarization, we have

u, — Jko <$ + ml,> u=0| IBC Horz. Pol.

We combine the two by defining
—jko(n?AY —sinf)  Vert.
Cc1 = 1
—]ko ('A—H — sin 0) Horz.
and writing as
u, +cqu=>0 (19)

The parabolic equation given in (18) is valid for propagating angles close to horizon-
tal (£10° in practice) [1]. To accomodate waves at higher angles we would need a
wide angle parabolic equation whose derivation is accomplished through a pseudo-
differential operator formalism [1].
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5. Wide Angle PE Derivation
Let us assume that the media constants are independent of horizontal range so that
a(z,y) = a(y), n(z,y) = n(y). We then have from (17)

: l da
Ugg + Uyy — J2kotz + e + (n*(y) — 1kju=0

Let

pP= _?_ Q= _1__2?_ n __1_1(32_ 2 Pseudo differential
T 0z’ T\ k2Oy?  Kiady Oy operator in y

Using this notation, the above PDE may be expressed as
[P* = 2jkoP + (Q° — 1)kZ| u =0
which we may factorize as
(P — jko — jko@)(P — jko + jkoQ)u = 0 (20)
To see this we expand the operator on the left hand side to get
P?— jkoP — jkoQP — jkoP — kg — k3Q
+ jkoPQ + K3Q* + ki@

Since PQ = QP, we have the desired result. The first operator in (20) denotes
an incoming wave (w.r.t. x) and the second an outgoing wave. We retain only the

outgoing wave to obtain

Pu= —jko(Q — 1)u (21)
The square root operator @ is global in nature and we would like to make some
approximations to derive a local operator fromit. (It is global because when expanded
in terms of series, it will contain terms of all derivatives). Now

Q= n2+_1_l£19__(?_+_1_?_2_ v
- k3 o dy Oy kg Oy’
Let us rewrite @ as
1/2
a 0 0*

= |1+ [P*(y) -1+ +
Q= 120 IS k) ko) * ko)
<1 n_ormally ~ vau ~

12




which may be expressed as

Q=v1+V
where

Ldd 1R
k2a dy Oy k% 0y?

= a small operator!

V = n?-1+

Treating V as an algebraic factor < 1, we may derive the following rational approxi-
mation (pade(1,1))

3
14 -V
RQ=V1+V = 111 (Claerbout)
14 -V
4
4 +3V 4 2V
44V T 44V
so that oy
1= [
°-1=(77)
Substituting into (21) we arrive at
. —27koV
Pu = jko(Q — 1)u = Pu= 41_;)/ u

or

(4 4+ V)Pu=—-2jkVu
. 1 da
Using the fact that a; = — ——, we get
o dy

2 2

a—y + 5}/—2 (22)

(n? 4+ 3)ki + a2

. 0
} uy, = —25ko [(n2 ~ 1)k§ + az—a—y + 8—y2 u

The above equation is a wide-angle parabolic equation valid for propagation up to
+20° [1]. Other approximations could be obtained by considering higher order pade
approximants.
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6. Boundary Condition on the Upper Boundary

To truncate the computational domain, we consider a point high enough where the
atmosphere is homogeneous with n = 1. The governing equation in the homogeneous
region becomes _

_gjg;uyy

Let us derive boundary conditions on a horizontal interface y = yo. For the sake
of simplicity we will derive boundary conditions of the mixed type on the interface
y = 0 (instead of y = yo) given the initial data on the line z = 0 and boundary data
on the line y = 0. Our derivation is based on the use of Fourier sine transforms as
suggested in [2]. Although the basic philosophy of our approach coincides with that
in [4], some of the details and the final results are slightly different from the latter.

Uy =

Consider the parabolic equation uy, — 2jku, = 0 in a homogeneous region z > 0,
y > 0, where k is a complex constant,

aY
T wu=fM
A‘/ f ‘

1 U= g(x)

A

X

7 7 7 7 7 7 ™

subject to the initial condition u(0,y) = f(y),0 <y < oo, and the boundary condition
u(z,0) = g(z), 0 < = < co. We assume that u(z,00) — 0 and uy(z,00) — 0. The

equation

Uyy = 25 kU (23)

is of Schrodinger’s type. We will treat the lossless case having a real value of k as
the limiting case of the lossy problem having k = ko — je, € > 0. We will solve the
problem using Fourier sine integral.

Let ,
U, ( /\)—\/z/oou(z )sin Ay d (24)
A Sl - xJo »Y) st yay

14




Then using integration by parts, we see that

2 [ . 2 :
\/;/0 Uy, (z,y)sin dydy = \/;{uy(a:,y)sm/\y

oo

oo

y=0

— )\ /OO u(z,y)sin Ay dy}
0

—Au(z,y)cos Ay

y=0

Because uy(z,00) — 0 and u(z,00) — 0, we have

\/>/ Uy (z,y)sin dudy = \/g)\u(x,O)—X‘)Us(x,)\)
2 2
= \/;)\g(x) — AU(z, X) (25)

Multiplying both sides of (23) with 1/2/7 sin Ay, integrating over y = 0 to oc and
making use of (25), we have

2 2 o 0
\/;)\g(x) — ANUs(z,A) = 2]k81 Us(z, A)

or
0 22 A /2
A =, /Z
g0 ) + 55 U@ ) = gy (o)
We may rewrite the above equation as
0 2 /9 A[2 210
il (3/25k)x| _ “ (32/25k)z
o [Us(a:,)\)e } 2k 7rg(ar:)e (26)

Replacing the dummy variable z in (26) with 7 and integrating both sides over 7 = 0

to r, we arrive at
/\2/21k TdT
=0 2]k\/7/1-—0

Uz, \) = —(3?/2jk)z f/ o (?/25K)(r—z)
(z,)) = Us(0,M)e 2]k . dr

Us;(0,) = ﬁfow u(0,y) sin Ay dy
= \/%/000 f(y)sin Ay dy = Fy(X)

Uy (7, X)X /28)7

or

But




Us(I,/\) = F,(A)e —(\/2jk)z ijf/_ 2 /2iK)(7=2) - (27)

Finally, taking the inverse sine transform on ( (27) we get

\/g/wsin)\y Us(z, A)dA
7 Jo
2 [ 2 j9;
J= [ F (e YR sin hy d
[\_0 (Ne sin Ay

by A / )\2/2_71: (- :rd d\
7r2]k/,\ 0 sin Ay T

= —/ f('r)sin/\‘rdre_(v/?jk)rsin)\yd)\
A=0J7=

2 1 T oo 2 s
4 Asin dye® 125k)(m=2) g\ d
+7r 27k T:Og(T) o T ye T

- l /T°° f(7) /:OO [cos(T — YA — cos(T + y)A] e~ (2/20K)z g\ dr

=0
—/ ( ) /oo cos Aye(’\zﬂjk)(“r)d/\ dr
—0 ]k Oy

= l f(r) /°° [cos(y — T)A — cos(y + 7)A] e—(A"’/?jk)xd/\ dr
=0

T Jr=0

1 z 0 ©0 270
_ o9 3 -0 /ZJk)(r—T)d)\}d
2 [ o ) e '

| Defining

K(z,y; z0,Y0) = /o cos(y — yo))\e~(’\2/2jk)(f_z°)d)\, for z > zo,

we write the expression for u(z,y) as

1

u(z,y) = —f f( ) [K(z,y; 0,7) — K(z,y; 0,—7)]dr
1 = 0
-;T—j_]; T=Og(7')5-y—]{(:1c,y;T,O)d?’ (28)

We now evaluate the integral for K. Consider

I{a) = /oo cos ahe~ (V2R E=z0) g\ | z > Zo
A=0

16




= /oo cos aheN12IkP)ik* (z=20) g\
A

= /oo cos a e~ (¥ (@=20)/2IkP)(e=7ko) g3
A

Because of the exponential decay, we may differentiate under the integral sign to
obtain
d —I(a) = — ™ X sin ade~ ¥ (e=z0)/2IP)e=iko) 1)
do A=0
. 2 [e- 0 emeo) 2P )ik
= sin aA -
/A:O (z — z0)(€e — gko)/|k|?

sin @ e~ (e=zo)(e=7ko) /2IkI* |0 alkl?

(z = zo)(e — jho) [k |,y (== zo)(e = sko)

/oo Ccos ade~ (W (z=zo)(e=gko))/21kI? 7y
0

dA

]alkl2 /oo _/\2( —z0)/25k ]ak
= -0 EmTNEAIEGN = —
(m — :co)k* A Cos aye (x — xo)](a)
dl(a) jak B
P z = xo)l(a) =0
or J
- [1(a)eie™ /==l = 0 = I(a) = I(a = 0)¢i97k/ (2la=z0) (29)
o'

Now I(a = 0) can be written as
Ha=0)= [ e Ozl g)
0

Let us view this integral in the complex A-plane.

Im (M) & ¢ Aeq (1) = _72]___

AN
N

Rn%imr\ Uf—
ch.mu Avg(l

Complex A-Plane

€
2K,

17




For the integral to converge for (z — o) > 0, Re[A\*(e — jko)] > 0, i.e.,

Re[A2(=7k)] > 0 = Im(A*k*) > 0

or
0<Arg (V™) <7
or
0<2Arg()\) — Arg(k) <
or
1 T 1
EArg(k) < Arg(X) < 5 + 3 Arg (k)
Now ] ] ]
-t () & £
Arg (k) = —tan <k0> e T <1
€ T €
= A< Lo —
ok < Arg(X) < 5 " ok (30)
Ha=0)= / ¢ ¥ (z=20)(=3k")/2IkF* g\
c
where C lies in the region of convergence.
In particular, let us choose a line from 0 to co along the line C,, defined by
25k
A= " w=10to oo (31)
T — Iy
Iw (X)) A
Cw

On this path,




I(a) = | —E__c-iatk/tata=zo)
2(z — zo) -

I{(.T,y, anyO) = é—(;-%()-)—e—Jk(y—yO)z/(Z(x_zo))

(32)

Substituting this into (28), the field u(z,y) for the initial-boundary value problem is

given by

™
U((C,y) — = i 0 ,2.7‘1 { —jk(y=7)?/(22) __ —]k(y+‘r 2r}d7_

_ Ik ke
r]k/_o 8y{ (a:—'r)e dr

It is easy to see that

, o 2 , ‘
%]% = / ——2—/}% cos|(y — yo)Ne ™ (z=7)/(23K) g )
0
2 o .
0
and, so for z # zo
K, 0K o 0K 10K
By? or oz 25k Oy?

which is the same equation satisfied by u. Now

L / —]k(y—T)Q/(QI) _ e-jk(yw)?/(zz)}
27z Jr=

0
mk L, g(T)ayI (z,y; 7,0)dr

gu _ ,/]k / 23;” = ik72/(22)

8y(x’y) ym0t - 2rz d
g(T) & —K(z,y; 7,0) dr

7r]k =0 ay Ys y_’0+
. L / —Jsz/(%)dT
2rzx

(T)25k 0 K(z, ,0) d

—_ T
7rjk 0 g I oz ¥ 0t T

19
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in view of (34). Furthermore, we note that

0 0
%I((x,y;zo,yo) = —5—01{(5”0% ZoYo)

Using this and evaluating the first integral by parts, we get

= — Q_j_]_c_{f(T)e—jkfz/(h) _/°° fT(T)e—jk#/(zr)dT}
0

T

o0

0
—u(z,y
ay ( )y—-)0+ =0

T

2 0 .
+- 9(7)5;1&(%3/, 7,0) dr

T=

y—0*

- —/@ [0~ [ rne1e9ar

o —/TzOgT(T)K(a:,O; T,O)dT]

y—ot

= +@f(0) + \/_2%/00 Fo(r)e i 122) g
B P F
9 2z _o\/a——f
= \/;[f(O)—g(O)]
27k [ 1 f+(1) _ikr2 /e z g (1)
+\/—T;{/o D cwtensy " olir)

From the compatibility conditions on the initial and boundary values, we have

g u(z,0) = 9(0) = limu(0,4) = /(0

r—0

2
+- g(T)K(z,y;7,0)

Therefore
au 2]k 1 o —jkr2/(22) ¥ gT(T)
—(z, =/ |—= . TREEdr — d
L N [ﬁ o T ()¢ 7 /mo\/x—-—; o)

It is easy to note from (35) that for k = kg — je,
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No matter how small the € is, we will use the same equality for the limiting case
of ¢ —> 0. We will evaluate the integrals above approximately by replacing the

derivatives with differences.

Y
4

ay

\{
X

We now consider the evaluation of du/0yly=0 at T = T,-1/2. Consider initial data
on the line z = 0. Let us assume that this initial data is known on a uniform grid
ym = mAy, m = 0,1,---. We approximate the derivative in the interval (ym-1,ym)
by the forward difference formula

Of(y) _ uUm — Um-1

5y~ Ay ; Y € (Ym—-1,Ym)

where u, = u(0,Ym).

Then ) -
= [7 ~ikT?)(22) gy § Ym T Umol
\/E/T—_-ofT(T)e ’ m2=:1 Ay
1 Ym .2
il e~ ikT?1022) 4
\/5 T=Ym-1
Let

k 1 s
;T—\/;r_u:>7_;d7—\/%dp
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We then have
k] (xz)ym

1 Ym .
—ﬁ/T e~ k)22 g0 \/-% / e"”“zﬁd,u

=Ym-1
VE/(mT)ym -1
} \Vk/ (rz)ym

\/ Wz)ym 1

where F(y) = complex Fresnel integral 8]
1 2 > Um — Um-— ™
ik (22) g — m = Um-1) [T
L[ pmeiries - 5 (tegte)

/3] )]

Consider now the boundary data on the line y = 0. Assume that we have a non-

uniform grid 0,z1,2,"**,Zp-1/2 = ¢. On the interval (Tm—-1,Zm), We approximate
the derivative as '
u™ — um-—l
gr(r) = ————
Im — Tm-1

where u™ = u(z,,0). At the origin we have u® = up. We write

wean_glr) g (e g (e o) g
=0 A /.'Ep_l/g - T =0 xp—l/? — T T=Tp-1 \/mp—1/2 - T

We evaluate the first integral as

[ory

Tp-1 m=1 przm
T
0

3

VI —T me1 Tm — Tm-1 Yom-1 4/ Tp-1/2 — T
-1 T
4 y™ — y™- 1 m
= ( 2\/1‘,,_1/2—7')
m=1% Tm-1 Tm-1
p-1 u™ — ym!
= 2 <\/$p—1/2 — Tm-1— \/Tp-1/2 — xm)
m=1 ITm — ITm-1
p—1 m m-—1
Ut —u
= 2 (37)

m=1 \/'Tp—l/Z —Zm-1t \/fp—l/z —Tm

22




Now
/%—1/2 g9-(7) ir ~ uP~1/2 — yp-l /%—1/2 dr
Tp-1  \Tp-1/2 T Tp-1/2 — Tp-1 Jzp1r A/ Tp-1/2— T
wP~12 — Pt rzpoip-ze-r dA

B (Zp-1/2 — Tp-1) /(; : VA

up—l/Z — Pl

= 2

Tp-1/2 — Tp-1

Substituting (36), (37), and the above in (35), we get

Rale 87k
+ u
w (@172~ 1) lyeo

k k
F ( ym) - F ( ym—l)jl
7TIP_1/2 7I’513p_1/2

85k 22 Tt 8jk
— + -uP™h (38)
4 "‘2:1 \Fp—l/2 Tm) + \/7;» 1/2 = Tm-1) (Tp-1/2 = Tp-1)

where

Tp-1/2

Ou

1 1
Tp1/2 = E(a:p_l +z,) => Tp-1/2 — Tp-1 = §(mp —Zyo1) 2

Aa:p_l

N —

The above equation is the discrete version of a continuous boundary condition of the

form

0
a—z +r(z)u = s(x) (39)
where
85k 1
r(z) = ERNE =l (40)
. ad Um — Um -1 k k
\/-2—1771}:::1 Ay F (\/Eym) - F (\/Eym—l)}
87k 22 ™! 85k
Pl 4
Z\/x—xm-}-f—xml-}_ (T — Tp-1) W, (4)
and .
F(z) = / i/ g (42)
0
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is the complex Fresnel integral (8].

For efficient implementation, the PDE and the various boundary conditions will be
transformed into a curvilinear coordinate system generated by setting the lower ir-
regular boundary as a constant curve curvilinear coordinate.
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7. Transformations to a Curvilinear Coordinate System

Consider the narrow angle parabolic equation with range dependent refractive index

(a; # 0) given in (18)

1 . o &
ur—m{alﬁ-agaﬁ--—a—yg}u PDE

together with the tropospheric boundary condition
0
-a—y'u(mm’ yO) + T(xm)u(xm) yO) = S(xmvyO)

and the impedance boundary condition on the irregular boundary

u, +qu=20

7 7 7 77 7 7 T'Y‘OIJOSPWC BOWV\JMY

M IMMMCL Boundany

We will transform these to a curvilinear coordinate system (£,7)

&Bgi' T T =N

_ y
L L

/”——_—_-—‘-\‘
LT
,7_/ r r ( B CLS 7 7 7 ’ 7 7 7 r ra 1) = o
Physical Domain Computational Domain
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We assume that we have a transformation of the following form

z=z(€), y=y&n)

The various metrics needed in the transformed equations are [5]
g = r§ + ygz ) g12 = T¢Zy + Yely -
We then have with /g = Z¢¥y — T¥e = Teyy # 0

~( )= ——( )

Uy = —(YpUe — YeUy) = UelYy — U

\/57 Ynle — YelUqg Zeyn EYn nYe
u

Uy = -—(—a:nu§+a:5un):——"

V9 Yn

10 (un) 1 { Yun ]
Uy = ——7|— | = 5 Uy — —U
v Yn 01 \ ¥y v "oy

Substituting into the PDE we get

1 1

UeYy — Un¥e) = 72
$eyn( & T 25k — ar) Yn Yy y2
or
Teaj az  Ym ¢ Ye T
U= ————ut || —— =t Ut
¢ (25ko — ) [(yn y?,) (25ko — a1) yn:l T (25ke —ar)y
Letting
b = Tea)
(25ko — a1)
Z¢ Ynn 1 Ye
b = _[(ag_—)e-—dr—}
Yn y2 ) (2jko —a1)  z¢
by =
3 (2]k0 - al)yzl
we express the PDE as
U,g = blu + bzu,, + b3u,m
The normal derivative on a n = constant line is
gu 912
u,(n = const.) = ,[>—u, — u
g " e
_ Etwe TeTy + Yen

= Uy Ue
TelYn — YeZy \/w'g’ + yg(miyn - yﬁxﬂ)
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Variation of an arbitrary vector 7 along the n = const. coordinate is

Defining

s de 23 Yey
| e | z? + y? z? + y}
z
COS 0 = ———;'6—2
VETRAT:
sinf = ye

VTE+ ¥

we express (44) as

Uy (x, cos 8 + y, sin )ug

* " ypcosf — zysin b ,/:cg + y(yn cosf — z,sin 4)

u

With these substitutions, the boundary condition at the bottom boundary u, +c;u =.
0 gets transformed to

(@, cos 0 + y, sin 0)

ug + (y, cos — z,sinf)cqu =0 onn=20

For z, = 0 and using /27 + y¢ = z¢/ cos H,F we get

un—yﬂsinﬁc059115+c1y,,c050u =0 @ =0

Z¢

Finally at the top boundary, we have

or

Up/yy +TU=35

U (€my N) + 7(€m, N)yn(€m)ul(fm, N) = y55(éms N)
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8. Generation of Curvilinear Coordinate System

Consider a piece-wise linear ground profile and a horizontal upper boundary

Vi L Vi L L £

A" B’ c’ D’

Ul T

X
8 /D

)—iA C

Non-Rectangular,
Uniform Mesh

Physical Domain

/¢ 7

xl:’Yo

/ﬁl’yiﬂ

XY

an

TR

s
ﬁIAI ’5, ICI 7 D'q7—0

Rectangular,
Uniform Mesh

Computational Domain

7’

&;,0 En' O

We generate the (z,y) coordinates of an interior point by using a linear interpolation.

28




Letting Az; = (Zig1 — i), Ayi = (Yiz1 — ¥i), and A& = (&1 — &), we write
Aa:,

z=z 5(5 &)

y——-(l—%)[ i?(é &)}

At any interior point, & < € < €41, the various metrics are evaluated as

= ——Ami z, =0
e = A& s n =
(49)
Ay; _ 1 Ay; _
yé = <1 ) Aé,' yn —_ N |:y0 - y1 A£1 (é é’l) ’ mi - 0
At the boundary points, we use the central difference formulas to arrive at
Tiva —Ti Az + Az
C=8) = ¢ e T BT AL (50)
7\ Ayit1 + Ay,

ey - (1-1)Smmtdn ,
w(e=6) = (1-§) 3erac (1)

Note that the analytical expressions yield a discontinuous value for these derivatives
at the boundary points. We use the analytical expressions only to generate grid
points and use the central difference formulas to arrive at the derivatives w.r.t. ¢.
In other words, once the grid points are generated on the lines AA’, BB, ..., etc.,
we assume that the space is smoothly connected through the grid pomts In the
numerical implementation using Crank-Nicolson implicit scheme [6], the metrics are
needed at the midpoint w.r.t. £, i.e., at £ = §;+ A¢;/2 and the interior point formulas
are applicable. For a uniform mesh in the computational domain, A{; = 1, n = g,
g=0.1,2,---,N

ze = Az (52)
w = (1-5) oy = wlo+ 1) -ule) = -2 (53)
1 i1+ Y
Yy = N(s/o—y—i%——@’—) (54)
_ _ 9 yi+1+yi) q
vo= (1 N) ( 3 )TN
i+1 T Yi
= BB gy = ot (e - My (55)

so that y(g + 1) —y(q) = y,-
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9. Numerical Implementation by Crank-Nicolson Scheme

Consider the narrow angle PE together with the boundary condition

Ug = blu + b2u,, + bgum, (PDE)

Uy — (2"— sin 8 cos 9) ue + cyycosfu =0 atn=0 (BC,)

Ze
Uy + YU =yp s atn =N (BC,y)

We would like to implement the above using a Crank-Nicolson implicit scheme {6}

at

L o4
-+

Av\:l

'

SR U A S ST

~ | 1

We use the notation u? = u(£p.7,) = u(Tp, ¥y)

The various derivatives assuming A{ = An =1 are

ue(bprjarmg) = ub—uh”’
1 1
Uy (P - §a4> = Un(ép—l/%nq) ~ 3 [un(ép—laﬂq) + un(fp’nq)]
1 _ _
=7 [“§+i —ufl) +ufps - “5—1}

or
U (p - % q) = 211‘ [ + e = (550 + )]

1 1 _ ) )
o (p B §’q) = 2 [uly = 2ul uly +ulg) - 2ul 7 ]
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Substituting into the PDE, we get

1\ w2+ ul!
wp—up” = by (p——,q) —

g 2 2
1
by (p— ~,q>
9 - _
+ 4 (uf;ﬁ + u§+1 - u”qo—] - ufl’_})
1
b5 (p = 309)
*\P 2(1 (up — P + P, +ul] 2u”1+up 1)
2 g+l q g-1 g+1

Rearranging the terms we get

b b 1 b
2<22+53>U5+1—(1+b3——21-)u§+§<b3——23>u5_1

1/b _ b 1 b -
+-2.(§2+b3)u5+}+(1—b3+51>u51+§<b3—§)u§_%=0
Now let
1( 1, \P" 12
a = = b+—b)
5 (15 .
bl p—1/2
- 4
2/,
1( b)p—l/2
7= Sl g
2 2 .
We then have for p=1,2,--+,¢=1,2,---, N -1
aul = (1+ B)ul + yup_y = —OZUZ;% - (1-B)u! —’YUZZ% (56)

However, we will extend the applicability of this equation over ¢ = 0,1,--+ N to
accomodate the derivative boundary conditions on the lower and upper boundaries.
For ¢ = 0, we have

ol — (14 Bub+ yuly = —ouf ™ — (1= fu™ — iy’ (57)
for ¢ = N, we have

oy — (14 By + yulioy = —aufily — (1= B = 7y (58)
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From the BC, at the lower boundary we have
g= o

i _ o1 p_.p p—1/2
_;_ [Ul s s ufl} — (i/i sin 6 cos 9) (US - ué—l)

.’Eg 0

Lz (Ul b
+ (c1y, cos 0)] 12 (-—0——2—0—-) =0

Multiplying this with 4()5™"/* and adding to (57)

Tg

(o +v)dd — (1 + 8 -2y [cly77 cos 6 — 2y—nsin00059}> uf

= —(a+ N = {1-84+27|ay cosH+2&sinﬂcosé’ ub!
UL 7 0

Z¢
. Letting
o = a+n
2sin 6
g = ﬂ—27yncosé<c1— o0 )
. Te

2sind
g’ = ﬂ—27y,,c050<c1+ s;n )
£

we may write the above equation as
a'uf — (1+ B')ub = —a'u}™ — (1= B")uf™ (59)

From the BC, at the top boundary we have
! % = N+

: ?)z N
e
p-! P
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1 Uk — Uh n “N+1 16jk uy + UN
2 2 7TA.’L'p 1
V2] &
= — m — Um- F - F m-
Un { Z (u u 1) '/T-Tp—l/z — 1/2:9 -1
87k 522 ul — ul! . 165k,
—_— —— . u
T m=1 (fp 172 — Tm + /Tp-1/2 — irm—l) AT, N

-1 -1 7k
U + U — (UTJJ\’—l + “7\"—1) + ¥,8 Az

3

or

(u’]’\, + u’,’\71> = 3/,,45’"1/2

p—1

multiplying with —a?\,_]/z and adding to (58)

~ |1+ 8+ y,8c ul + (v + e)ujy

J
ﬂ'AIp_l

N P Ik
= [1 B — y,8c AT
7k
A =
ﬂ + y"78a WA-Tp-l

!

7 = y+ta

Wi — (v + @)l — day,s”V?

Letting

we rewrite the above equation as

(14+ MNuh —~'ul_, = (1 = /\)uﬁ’\fl + 7'115’\,7_11 + 4623,/,73’"1/2 (60)

TZp-1/2 TZp-1/2

-1
[ o =
T m=1 (\/xp—l/Z — T+ \/Tp-172 — $m—1)

165k

TAL, 1

where

_ 2] <
P12 — —A\/-EJ-Z(um——um-l)

+ uN
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and

Az, = Tp—Tp-1
1

5 (zp + xp—l)

A.’L‘p_] =

N +—

Tp-1/2 = ZTp-1t

We augment the equations given in (56) for ¢ =1,2,...,N —1 with (59) and (60) for
g =0 and N, respectively to define for ¢ = 0,1,2,...,N. The system of equations so
defined can be expressed as a matrix equation of the form

(X X 1{w] [x X 1 [ue]
X X X uf X X X up™!
X X X : X X X :
i X x| [w] | X X | |2
!'0 in'!
+ (61)
I 4ozynsp’1/2_

where X denotes a non-zero entry. The tridiagonal matrix on the left hand side of
(61) can be inverted efficiently to yield a solution on line £ = ¢, in terms of the field
values on the line £ = £,_;. Equation (61) can be used to march forward in range
starting from initial data specified on { = 0.
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